
Eur. Phys. J. B 55, 229–235 (2007)
DOI: 10.1140/epjb/e2007-00050-6 THE EUROPEAN

PHYSICAL JOURNAL B

Density-functional calculation of the quadrupole splitting
in the 23Na NMR spectrum of the ferric wheel Na@Fe6(tea)

+
6

for various broken-symmetry states of the Heisenberg spin model
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Abstract. The quadrupole splitting in the 23Na nuclear magnetic resonance (NMR) spectrum of the hexa-
nuclear ferric wheel Na@Fe6(tea)

+
6 has been computed via an evaluation of the electric-field gradient

(EFG) at the Na nucleus in the framework of density-functional theory (DFT). The simulated spectrum is
compared with experimental data. A total of 26 = 64 Kohn-Sham determinants (a number that reduces to
eight symmetry-unique determinants due to the high S6 symmetry of the ferric wheel) with six localised
high-spin Fe(III) centres (S = 5/2) could be optimised in a self-consistent manner, and the corresponding
DFT energies of all of these (broken-symmetry) determinants coincide almost perfectly according to the
Ising Hamiltonian solutions, especially when the energy is computed from the B3LYP functional. The
EFG at the Na atom does not depend much on the specific Kohn-Sham determinant but depends on the
geometry of the ferric wheel and on the basis set used in the DFT calculations (particularly with regard
to the atomic functions on the Na atom).

PACS. 31.15.Ew Density-functional theory – 33.25.+k Nuclear resonance and relaxation – 75.30.Et
Exchange and superexchange interactions – 75.50.Xx Molecular magnets

1 Introduction

In recent years, a variety of molecules have been synthe-
sized that exhibit molecular magnetism. Such molecules
usually consist of between 6 and 18 transition-metal atoms
coordinated by organic ligands [1]. The metal atoms have
no direct chemical bond but interact via bridging oxy-
gen atoms. Hexanuclear ferric wheels are prominent ex-
amples of such molecular magnets [2–4], and the present
work is concerned with the hexairon(III) hexa(triethanol-
ate)amine complex, or more precisely, with its derivatives
Na@Fe6(tea)+6 and Li@Fe6(tea)+6 (cf. Fig. 1).

The magnetic properties and the 7Li NMR spectra of
these molecules have been studied in detail experimen-
tally [5,6], and in the present work, we report the 23Na
NMR spectra and aim at a full computational ab ini-
tio description of the observed properties. In particular,
we shall use density-functional theory to compute both
the exchange-coupling constant J of the Heisenberg spin
model and the electric-field gradient at the alkali atom (Li
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Fig. 1. Na@Fe6(tea)
+
6 , with all hydrogen atoms omitted for

clarity. Colour legend: Na (grey), Fe (yellow), O (red), N (light
blue), C (orange).

or Na), which we will use to simulate the quadrupole cou-
pling splitting of the 23Na NMR signal. For Li@Fe6(tea)+6
the splitting is too small to be observed [6].
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2 Theory

2.1 Exchange-coupling constant

The Heisenberg spin model (HSM) is appropriate for the
description of the magnetism of a spin system such as the
ferric wheel. The HSM Hamiltonian is

Ĥ = −
N∑

i<j

Jij Ŝi · Ŝj , (1)

where Jij is the interaction strength (exchange-coupling
constant) between the spin centres i and j, and Ŝi and
Ŝj are the respective local spin operators. Second- and
higher-order terms are assumed to be negligible [7,8]. If
all nearest-neighbouring spin centres have the same inter-
action strength and all other couplings are negligible, the
HSM can be simplified to

Ĥ = −J

N∑

i=1

Ŝi · Ŝi+1, ŜN+1 = Ŝ1. (2)

Ideally, one would like to compute the low-lying electronic
states of the molecular system by means of multireference
wavefunction-based methods that include dynamic elec-
tron correlation effects. The electronic wavefunctions re-
sulting from such calculations would be spin eigenstates,
and one could compute a value for J by comparing the
electronic energies with the eigenvalue spectrum of the
Heisenberg Hamiltonian. An example of such a calcula-
tion on a dinuclear compound (as a model for the hexanu-
clear ferric wheel) has been reported very recently in this
journal [9] (for earlier examples, see references therein).

Multireference wavefunction-based methods are not
applicable, however, to large molecular systems such as
the hexanuclear ferric wheel. Therefore, such systems are
usually treated at the level of density-functional the-
ory (DFT) by the broken-symmetry (BS) approach of
Noodleman[7,10]. In this approach, one searches for the
BS solution to the Kohn-Sham (KS) equations and com-
pares the total energy of this solution with the energy
of the high-spin (HS) state, which is typically well de-
scribed by the corresponding KS determinant. There are
formal problems with this approach related to whether
or not BS solutions would exist if the exact exchange-
correlation functional were used, whether or not one can
evaluate expectation values of many-body operators such
as 〈Ŝ2〉 in DFT, and whether or not one should regard
the HS-KS and BS-KS solutions as exact spin eigenstates.
References [8] and [11] provide recent and comprehensive
discussions of these issues.

In the present article, we follow the original BS ap-
proach of Noodleman. Using ladder operators, the HSM
Hamiltonian can be written as

Ĥ = −J
N∑

i=1

[
1
2

(
Ŝi+Ŝ(i+1)− + Ŝi−Ŝ(i+1)+

)

+ ŜizŜ(i+1)z

]
, ŜN+1 = Ŝ1. (3)

Neglecting the ladder operators (i.e., assuming the overlap
of different determinants to be zero), this leads to the Ising
Hamiltonian

ĤIsing = −J

N∑

i=1

ŜizŜ(i+1)z, Ŝ(N+1)z = Ŝ1z. (4)

Within the usual spin-unrestricted KS calculations used in
the BS approach, local high-spin centres are only realised
by states with either all spins at one centre aligned down-
wards or all spins aligned upwards. For the case of N local
high-spin centres, the operator Ŝiz yields MS,max = S (all
spins up) or MS,min = −S (all spins down). The product
ŜizŜ(i+1)z thus yields −S2 for antiferromagnetically and
+S2 for ferromagnetically coupled neighbouring spin cen-
tres, and the expectation values of the Ising Hamiltonian
for various Kohn-Sham determinants become

E = −J

N∑

i=1

MSiMSi+1 = −J (PFM − PAF)S2, (5)

where PAF and PFM are the numbers of antiferromag-
netically (AF) and ferromagnetically (FM) coupled neigh-
bouring spin centres, respectively, and S is the total spin
quantum number (S = 5/2) on each centre.

If the overlap between different spin centres is not neg-
ligible [12], the energy is given by

E = −J

[
(PFM − PAF)S2 − 1

2
PAF Tr(SabST

ab)
]

, (6)

with Sab the overlap matrix containing all spatial overlap
integrals between the magnetic orbitals on the AF-coupled
centres a and b (in the present case, a 5×5 matrix).

Unfortunately, very different values for J are obtained
with the BS approach for different popular DFT function-
als. Former studies [9,13,14] have shown that the B3LYP
functional works well in practice. Hartree-Fock theory fails
completely (it does not even give the correct sign of J) and
non-hybrid gradient-corrected methods tend to overesti-
mate the value of J by a factor of 2 to 5. J can be deter-
mined experimentally by measurements of the static mag-
netic susceptibility. We have used the energy-conversion
factor 1 Eh = 3.157 746 5(55)× 105 K.

2.2 Electric-field gradient

In the present article, we are primarily interested in the
electric-field gradient (EFG) at the nucleus of the alkali
atoms Na and Li in Na@Fe6(tea)+6 and Li@Fe6(tea)+6 , re-
spectively. The traceless EFG tensor at a point K is com-
puted as a n-electron expectation value

VEFG =
1
3

nelec∑

i=1

〈0|3riKrT
iK − rT

iKriKI
r5
iK

|0〉

−1
3

nnucl∑

A=1

ZA
3rAKrT

AK − rT
AKrAKI

r5
AK

, (7)



F.A. Bischoff et al.: DFT of calculations on the ferric wheels Na@Fe6(tea)
+
6 231

Table 1. Basis-set combinations.

Basis set Alkali Fe N, O C, H

SSSS SVP SVP SVP SV(P)
TSSS TZVP SVP SVP SV(P)
TTSS TZVP TZVP SVP SV(P)
QTSS QZVP TZVP SVP SV(P)
qTSS dec-QZVP TZVP SVP SV(P)
gTSS ghost-dec-QZVP TZVP SVP SV(P)
0TSS None TZVP SVP SV(P)
qTSSsf dec-QZVPsf TZVP SVP SV(P)
qTSSssf dec-QZVPssf TZVP SVP SV(P)
TTTS TZVP TZVP TZVP SV(P)
QTTS QZVP TZVP TZVP SV(P)

where riK = ri − K is the vector from the point K to
electron i, rAK = rA − K the vector from the point K
to nucleus A, |0〉 the KS determinant, and I a 3×3 unit
matrix.

The HS-KS and BS-KS states are represented by dif-
ferent KS determinants with different electron densities
and thus yield different EFGs. As the EFG interacts with
the nuclear quadrupole moment, it can be observed in the
nuclear magnetic resonance (NMR) spectrum of the alkali
atom. The EFG is sensitive to the geometric structure of
the molecular system and can reveal effects such as Jahn-
Teller distortions.

As the title molecule is an oblate symmetric top, the
xx and the yy tensor elements of VEFG are identical while
the zz element is twice as large in absolute value but with
opposite sign. It is therefore sufficient to give only the zz
element, which in the present work is reported in units of
ma.u. = 10−3 Eh/(a2

0e) = 9.717 361 82(83)× 1018 Vm−2.

3 Methods

All calculations were carried out with the Turbomole
program package [15–17]. They were performed as spin-
unrestricted KS calculations without imposing symmetry.
The following exchange-correlation functionals were used:
BP86 [18–21], B3LYP [18–20,22–24], TPSS [18,22,25,26],
and TPSSh [18,22,25–27]. Basis sets were taken from the
Turbomole basis set library [28], and the abbreviations
for various basis-set combinations are listed in Table 1.
The prefix “dec” indicates a fully decontracted basis and
the suffixes “sf” and “ssf” denote additional steep func-
tions at the central alkali atom. When steep functions
were added, they had the following exponents (obtained
by multiplying the largest exponents of the original basis
by 10 and 100): for Na, s: 37985220.08, 3798522.008, p:
69077.627017, 6907.7627017, d: 290, 29.0, f: 13.5, 1.35; for
Li: s: 1485397.7085, 148539.77085, p: 326.051, 32.6051, d:
23.0, 2.30, f: 13.5, 1.35. Only the functions with the smaller
of the two additional exponents were used for the sf basis
sets, both extra functions were used for the ssf basis set.
Other numerical parameters are: grid m4 for the numerical
integration, thresholds of 10−8Eh for the self-consistent-

(a) αβαβαβ (b) ααββαβ

(c) αααβββ (d) ααβααβ

(e) αααβαβ (f) ααααββ

(g) αααααβ (h) αααααα

Fig. 2. Spin densities of the eight B3LYP/QTSS Kohn–Sham
determinants of Table 3. Spin-up: blue, spin-down: red.

field (SCF) convergence criterion and a Cartesian gradi-
ent of 10−4Eh/a0 for the geometry optimisations. All cal-
culations were performed for the M@Fe6(tea)+6 ion with
M = Na, Li using the X-ray diffraction (XRD) structures
of [2].

We applied the following procedure to obtain the BS
solutions: first, the HS-KS calculation was performed with
trial orbitals obtained from an extended Hückel calcula-
tion with 30 unpaired electrons. Then, for all the other
BS-KS determinants, the valence orbitals of the HS-KS de-
terminant were localised, an appropriate number of spins
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Table 2. Exchange-coupling constants and energy differences between the AF and the FM determinants of M@Fe6(tea)
+
6 with

M = Li, Na (experimental XRD structures).

Alkali Basis BP86 B3LYP TPSS TPSSh Exp.
∆E/mEh J/K ∆E/mEh J/K ∆E/mEh J/K ∆E/mEh J/K J/K

Na QTSS −20.34 −85.6 −6.12 −25.8 −17.18 −72.3 −9.11 −38.4
QTTS −21.76 −91.6 −6.93 −29.2 −18.45 −77.7 −10.03 −42.2 −23.0

Li QTSS −17.86 −75.2 −4.39 −18.5 −14.77 −62.2 −7.17 −30.2
TTTS −19.22 −80.9 −5.15 −21.7 −15.09 −67.3 −8.04 −33.3 −18.1

in these localised orbitals were flipped. The resulting or-
bitals were used as an initial guess vector, which after
SCF optimisation converged to the targeted BS-KS states.
The spin densities of these states are depicted in Figure 2,
showing that the correct BS-KS states were obtained by
the localisation/spin-flipping procedure. The EFG was fi-
nally calculated using the script Moloch2.

4 Magnetic coupling

4.1 XRD structures

The exchange-coupling constant J , calculated with vari-
ous functionals, is displayed in Table 2. ∆E denotes the
energy difference between the AF and the FM deter-
minant. We observe that very different results are ob-
tained with the different functionals, but all carry the
correct sign. The experimental value for Na@Fe6(tea)+6 is
−23 K [5]. Only the results using the B3LYP hybrid func-
tional (−25.8 K in the QTSS basis) are close to this value,
all the other functionals overestimate the magnitude of J .
BP86 gives J values too large by about a factor of four
(−85.6 K) and TPSS by about a factor of three (−72.3 K).
Even the hybrid functional TPSSh overestimates the mag-
nitude of J by almost a factor of two (−38.4 K). There is
not much basis-set dependence. Only when the basis on
the bridging O atoms is enlarged (as in the QTTS and
TTTS basis sets), J increases by about 10% in magnitude
for all functionals. This reflects the superexchange by the
bridging O atoms.

The other determinants were also considered for
Na@Fe6(tea)+6 and were computed in the QTSS basis with
the BP86 and the B3LYP functionals. By virtue of the
symmetry of the molecule (almost S6), there are only
eight distinct determinants, including the AF and the FM
states. Within the HSM, energies are easily evaluated and
can be compared with those of the DFT calculations. The
results are listed in Table 3. The relative energies ∆E
with respect to the AF determinant are given in the first
column of each functional entry. In the second column,
the energy of the AF determinant was set to +6JS2 and
that of the FM determinant to −6JS2, according to the
HSM (Eq. (5)), and all the other values are given rela-
tive to these two. It appears that the B3LYP values fit
much better to the HSM than those of BP86. Probably
due to its more localised nature, the overlap Tr(SabST

ab) is
much smaller in the case of B3LYP (≈6.55 × 10−3) than

for BP86 (≈3.7 × 10−2), indicating that the mapping of
the B3LYP functional onto the Heisenberg Hamiltonian
is more justified than the mapping of BP86. This fact,
and the superior values for J , are evidence that B3LYP is
likely to give good exchange coupling constants. Inclusion
of the overlap would decrease the magnitude of J , but
the effect is negligible in comparision with other sources
of error. In the special case of Fe6(tea)6, J decreases by
about 0.025% with B3LYP and by 0.14% with the BP86
exchange-correlation functional. All of the values were ob-
tained for the experimental XRD structure, which is not
strictly S6 symmetric, and the small deviations of the DFT
energies from the Heisenberg model show that the model
is valid for this molecule. As expected, all determinants,
except that of FM, are heavily spin-contaminated as they
are not pure spin states.

4.2 Optimised structures

The structures of the molecules were optimised for the
FM and AF determinants, using different basis sets and
functionals. As such optimisations are computationally de-
manding, not all possible combinations of functionals and
basis sets were calculated. The geometry convergence was
poor, indicating a shallow minimum or several local min-
ima. Both optimised structures are larger than the XRD
structures, independent of functional and basis set. In par-
ticular, the optimised distance of the nitrogen ligands from
the Fe atom is consistently around 15 pm longer than in
the XRD structure, indicating counterion and/or pack-
aging effects. However, the Fe–O–Fe bonding angles are
different for the three structures. The angles decreased
from the XRD structure to the AF structure by roughly
one degree and by another degree for the FM structure,
depending on which oxygen atom defines the angle. The
structures were nearly independent of the functional.

The results of the magnetic coupling calculations us-
ing the optimised structures are given in Table 4. For the
optimised structures, we observe similar trends as for the
XRD structures, but J is significantly smaller in absolute
value than for the XRD structures. The reason for this
decrease is the reduction in the bonding angles between
the Fe atoms and the bridging oxygens and the simulta-
neous increase in the bond lengths. This leads to a weaker
interaction between the Fe centres and thus to a stabili-
sation of the FM state. The AF state is also stabilised by
relaxing the geometry but not as much as the FM state,
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Table 3. Values of J for different determinants of Na@Fe6(tea)
+
6 (QTSS basis, experimental XRD structure).

Determinant BP86 B3LYP Ising MS 〈Ŝ2〉
∆E/mEh E/(JS2) ∆E/mEh E/(JS2) E/(JS2)

αβαβαβ 0 6 0 6 6 0 15
ααββαβ 6.42 2.21 2.01 2.05 2 0 15
αααβββ 13.14 −1.76 4.04 −1.93 −2 0 15
ααβααβ 6.45 2.19 2.01 2.05 2 10 40
αααβαβ 6.58 2.21 2.02 2.03 2 10 40
ααααββ 13.18 −1.78 4.04 −1.94 −2 10 40
αααααβ 13.36 −1.89 4.06 −1.97 −2 20 114
αααααα 20.34 −6 6.12 −6 −6 30 240

Table 4. Exchange-coupling constants and energy differences between the AF and the FM determinants of M@Fe6(tea)
+
6 with

M = Li, Na (DFT-optimised structures).

Alkali Basis BP86 B3LYP TPSS TPSSh
∆E/mEh J/K ∆E/mEh J/K ∆E/mEh J/K ∆E/mEh J/K

Na SSSS −15.32 −64.5 −4.40 −18.5 −13.30 −56.0 −7.03 −29.6
QTSS −17.16 −72.2 — — −15.13 −64.7 — —

Li SSSS −14.09 −59.3 −3.39 −14.3 −11.62 −48.9 −5.60 −23.6
QTSS −15.85 −66.7 — — — — — —

because of the decreasing bond angles. As the optimised
structures of the different functionals are very similar, the
reduction has a nearly constant factor of ≈ 0.75 [1,29].

5 Electric-field gradient

5.1 Na@Fe6(tea)
+
6

The computed EFG at the Na atom of Na@Fe6(tea)+6 is
shown in Table 5. We observe small differences between
the different functionals and configurations (AF or FM),
but larger differences between the results obtained in dif-
ferent basis sets. When the basis set is increased, the mag-
nitude of the EFG increases, for example from −24.5 ma.u.
in the SSSS basis to −71.6 ma.u. in the QTSS basis (BP86
functional, FM state). However, a decontraction of the ba-
sis at the central Na atom reduces the EFG (−46.4 ma.u.
in the qTSS basis). This latter value does not change when
we add additional steep functions (qTSSsf basis), indicat-
ing that the results are close to the limit of a complete
basis on Na. In the qTSSsf basis set, the functionals mutu-
ally differ by less than 8%. The enlargement of the basis at
the O atoms that are the nearest neighbours to Na yields
qualitatively the same effect as the decontraction of the Na
basis, but to a smaller extent. If one removes the central
sodium atom but leaves the basis set, the EFG vanishes
nearly completely (FM, BP86/gTSS: Vzz = +2.9 ma.u.).
All of the effects can be traced back to the polarisation of
the Na atom. The SSSS basis is too small to cover such
effects, they occur only with larger basis sets. Moreover,
the Na basis must be decontracted to describe the elec-
tron density properly in the vicinity of the nucleus. The
EFG is the curvature of the electrostatic potential at the

Na nucleus and is sensitive to the electron density at that
point in space. The effect of increasing the O basis set is
similar to that of decontracting the Na basis, as they span
the same space.

The computed EFG can be used to calculate the Stern-
heimer antishielding factor γ∞ of the Na atom. Denoting
the EFG with and without the central Na atom as Vzz and
Vzz,0 respectively, γ∞ = 1−Vzz/Vzz,0 becomes +17(3) in-
stead of the published value of −5.3(1) [30].

The optimised structure of Na@Fe6(tea)+6 shows a sig-
nificantly smaller EFG (bottom row in Tab. 5). During the
optimisation, the distances of the nearest-neighbouring
O atoms from the central Na atom increased by about
3%, while the Fe atom separation increased by only 1.5%.
This means that the electrostatic potential becomes more
spherically symmetric, causing the EFG to decrease in
magnitude.

5.2 Li@Fe6(tea)
+
6

In contrast to Na@Fe6(tea)+6 , Li@Fe6(tea)+6 has only Ci

symmetry. This implies that the xx and the yy elements
of the EFG tensor are no longer identical. Furthermore,
all values are very small (Tab. 6). As before, the different
functionals yield similar results, and the same holds for the
two spin states (FM and AF). The basis set dependence
is somewhat different from Na@Fe6(tea)+6 . All basis sets
give the same results except for the decontracted sets with
additional steep functions (qTTSsf and QTTSssf). When
the Li is removed (gTSS), only a small change in the EFG
is observed. This can be understood in the context of a
polarisability. Li is smaller and harder than Na, it is much
less polarised by the surrounding molecule.
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Table 5. VEFG,zz-element of the traceless EFG tensor of Na@Fe6(tea)
+
6 in 10−3 Eh/(a2

0e) (experimental XRD structure). In the
last row, the notation “qTSS/SSSS” denotes that the the EFG was calculated in the qTSS basis set for a structure optimised
in the SSSS basis.

BP86 B3LYP TPSS TPSSh
FM AF FM AF FM AF FM AF

SSSS −24.5 −24.6 −33.5 −33.6 −27.4 −27.5 −29.9 −30.0
TSSS −57.7 −58.4 −60.5 −60.9 −61.0 −61.7 −56.1 −56.6
TTSS −65.3 −66.1 −66.0 −66.4 −67.4 −68.1 −61.0 −61.5
QTSS −71.6 −72.3 −76.0 −76.4 −73.8 −74.5 −68.5 −69.0
qTSS −46.4 −47.2 −48.6 −49.0 −50.2 −50.9 −48.0 −48.5
qTSSsf −45.7 −46.4 −48.5 −48.9 −49.3 −49.9 — —
TTTS −64.1 −64.9 −65.1 −65.5 −66.5 −67.2 −60.1 −60.6
QTTS −61.5 −62.2 — — −65.6 −66.2 −61.0 −61.0
gTSS 2.9 — 4.0 — 2.9 — 3.3 —
0TSS 1.3 — 2.4 — 1.2 — 1.7 —

qTSS/SSSS −24.2 −36.8 −26.6 −34.8 −30.5 −42.5 −29.6 −39.0

Table 6. Elements of the diagonalised EFG tensor of Li@Fe6(tea)
+
6 in 10−3 Eh/(a2

0e) (XRD structure).

BP86, FM BP86, AF B3LYP, FM B3LYP, AF

SSSS −4.9/−0.5/5.4 −4.9/−0.5/5.4 −4.9/−0.6/5.5 −4.9/−0.7/5.5
QTSS −5.4/−0.5/5.9 −5.4/−0.5/5.9 −5.1/−0.7/5.8 −5.1/−0.7/5.8
qTSS −5.5/−0.5/6.0 −5.5/−0.5/5.9 −5.2/−0.7/5.9 −5.2/−0.7/5.9
qTSSsf −3.9/−0.5/4.4 — — —
TTTS −4.9/−0.7/5.6 −4.9/−0.7/5.5 −0.8/−4.9/5.7 −4.9/−0.8/5.7
QTTS −5.1/−0.6/5.8 −5.1/−0.6/5.7 — —
qTTS −5.3/−0.6/6.0 −5.3/−0.6/5.9 — —
qTTSsf −3.8/−0.5/4.3 — — —
qTTSssf −4.0/−0.5/4.5 — — —
gTSS −2.6/−1.0/3.7 — — —

qTSS/SSSS −1.6/0.6/1.1 −1.9/0.7/1.2 −0.9/−0.3/1.2 −0.7/0.2/0.5

TPSS, FM TPSS, AF TPSSh, FM TPSSh, AF

SSSS −5.2/−0.3/5.5 −5.2/−0.3/5.5 −5.1/−0.4/5.5 −5.1/−0.4/5.5
QTSS −6.1/−0.0/6.1 −6.1/0.0/6.1 −5.9/−0.2/6.0 −5.9/−0.1/6.1
qTSS −5.9/−0.1/6.0 −5.9/−0.1/6.0 −5.7/−0.2/6.0 −5.8/−0.2/6.0
TTTS −5.0/−0.5/5.5 −5.0/−0.5/5.5 −4.9/−0.6/5.5 −4.9/−0.6/5.5

qTSS/SSSS −1.6/0.5/1.2 −2.8/1.3/1.5 −0.9/0.4/0.5 −2.2/0.0/1.3

When relaxing the molecule the EFG changes signif-
icantly, similar to Na@Fe6(tea)+6 . However, the resulting
numbers are too small and too uncertain for any conclu-
sions to be drawn.

5.3 NMR spectra

The 23Na NMR (I = 3/2, γ0/2π = 11.2615 MHz/T,
Q = +109(3) × 10−31 m2 [31]) measurements were per-
formed at the GHMFL with a pulsed NMR spectrometer
at 0.44 K. The Na@Fe6(tea)6Cl sample was mounted to-
gether with a metallic 27Al (γAl/2π = 11.094 MHz/T,
K = 0.161%) frequency reference in a dilution refrig-
erator. The orientation of the molecular symmetry axis
with respect to the static magnetic field could not be de-
termined before the experiment. The 23Na spectra were
measured with a 2 pulse π/2 − τ − π echo sequence
(π/2 pulse length was 10 µs). Figure 3 shows the spec-

trum recorded at B0 = 10.5 T. Accurate measurements
of the line position were carried out at B0 = 10.4938 T
(ν0,Al = 116.6057 MHz). The frequency of the central line
(+1/2 ↔ −1/2 transition) was νc = 118.1870 MHz, and
for the high (H) and low (L) frequency quadrupole satel-
lites νH and νL (+1/2 ↔ +3/2, and −1/2 ↔ −3/2 tran-
sitions) 118.3060 MHz and 118.0706 MHz, respectively.

For a quantitative analysis of the NMR spectra, the
frequency of the three NMR lines can be calculated in the
case of the axial symmetry of the hexa-nuclear iron ring
for a given orientation ϑ of the external magnetic field,
according to [32,33]

νc = νz + ∆ν
(2)
Q1/2

(8)

for the central transition, and

νH,L = νz + ∆ν
(2)
Q3/2

± |∆νQ| (9)
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Fig. 3. Na-NMR single-crystal spectrum of Na@Fe6(tea)
+
6

measured at 440 mK and B0 = 10.5 T.

for the high and low frequency quadrupole satellites. Here,

νz = ν0,z (1 + δ) , (10)

with ν0,z = (γ0/2π)B0 and the chemical shift δ
(∼94 ppm),

∆νQ = 1
2νQ

[
3 cos2 ϑ − 1

]
(11)

with νQ = e2qQ
/
2h and the EFG eq = Vzz ,

∆ν
(2)
Q1/2

= − 3ν2
Q

16νz

(
1 − cos2 ϑ

) (
9 cos2 ϑ − 1

)
, (12)

and

∆ν
(2)
Q3/2

= +
3
2

ν2
Q

νz

(
1 − cos2 ϑ

)
cos2 ϑ. (13)

With the experimental results, the first-order quadrupo-
lare splitting becomes ∆νQ = 117.7 kHz and the second-
order correction δH = νH−νc−∆νQ = ∆ν

(2)
Q3/2

−∆ν
(2)
Q1/2

=
1.3(2) kHz. There are two possible solutions for these num-
bers. The orientation of the molecular symmetry axis is
either ϑ1 = 45.0(8)◦ and νQ,1 = 470(40) kHz or ϑ2 =
62.8(8)◦ and νQ,2 = 630(60) kHz. With νQ = e2qQ

/
2h the

corresponding electric-field gradients are Vzz,1 = 3.57(32)·
1020 V/m2 and Vzz,2 = 4.78(44)× 1020 V/m2 (the sign of
Vzz cannot be determined in the experiment). The exper-
imental results have to be compared with the computed
EFG (AF determinant, qTSS basis, XRD structure, av-
erage of the four functionals) |Vzz | = 48.9(1.5)ma.u. =
4.75(15) × 1020 V/m2. This value agrees especially well
with the second solution of the experimental data and in-
dicates that the orientation of the molecular axis during
the experiment was ϑ2 = 62.8(8)◦.
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